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Introduction.1 The functional inversion problem, stripped of all nuance, is very
easily posed: given that y = f(x), display a function g(y) such that

g(y) = g(f(x)) = x

But nuance—and its attendant complications— are in many instances the name
of the game. If f(x), taken here to be a real-valued function of a real variable,
is continuous and monotonic then the form and essential properties of g(y)—if
not its analytic description—can be read off from a graph of y = f(x). From
such graphs one can gain also a sense of the complications that arise if f(x)
is discontinuous, or not monotonic; it becomes obvious that g(y) will in many
cases be multi-valued.

The solution of inversion problems—like the evaluation of integrals (and
sometimes because it involves the evaluation of integrals)—often entails
expansion of the list of previously “named functions.” Historically, one of the
first such events had to do with the invention of logb y.

John Napier (1550–1617), who had in mind mainly the practical needs of
astronomers and navigators, is credited2 for having been the first to recognize
the computational power latent in the “law of exponents,” (which itself goes
back to Archimedes). If y1 = bx1 and y2 = bx2 then y1 · y2 = bx1+x2 , and
multiplication has been reduced to addition.3 Napier initially called the numbers

1 Work on this revision of some earlier drafts was begun on 22 August, the
day after a celestial inversion event of awesome beauty, the Great American
Eclipse of 2017.

2 Not quite accurately; Jost Bürgi (1552–1632), a Swiss watch and instrument
maker, had the same idea, independently and almost simultaneously.

3 In previous decades people had used identities such as

cosα · cosβ = 1
2{cos(α− β) + cos(α + β)}

to accomplish that same objective. Success here presupposes the availability
(motivates the construction) of trig tables.
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{x1, x2} “artificial numbers,” and later “logarithms” (from logos + arithmos =
“ratio + numbers”). Standardly we write xi = logb yi, which we call the “log of
yi to base b.” How Napier arrived—without the assistance of the calculus—at
the “Napierian logarithm” (subsequently called the “natural logarithm”)—how,
in short, he arrived at the invention of e—is a tangled tale told in Chapter 4 of
Julian Havil’s John Napier: Life, Logarithms & Legacy (2014).4 Tangled also
is the tale of how he proceeded to the construction of his log tables, work soon
replicated all over Europe by mathematicians who appreciated the fundamental
significance of Napier’s creation. Descendents of those log tables served as
indispensable aids to scientists and engineers until they were—like sliderules—
rendered obsolete by computers in the 1970s.

Napier’s logarithm became the “logarithmus naturalis” (terminology of
Pietro Mengoli and Nicholas Mercator) even before the invention of the calculus,
but it is the calculus (Euler, 1748) that lent vivid meaning to the adjective; from
logb(x) = log x/ log b we have

bx = 1 + x log b + 1
2 (x log b)2 + 1

6 (x log b)3 + 1
24 (x log b)4 + · · ·

d
dxbx = bx log b

both of which (by log e = 1) are simplified by setting b → e.

From Napier to Lambert to Sommerfeld. In 1758, Johann Lambert (1728–1777)
had occasion to study an equation

xα − xβ = (α− β)yxα+β

that has come to be known as “Lambert’s transcendental equation,” and which
came to Euler’s attention in 1764. In the limit α → β 5 this assumes the special
form

log x = yxβ

4 Havil provides a fascinating account of the remarkably rich life of Napier, of
whom Mark Napier (1834) wrote: With the exception of those little episodes we
have noticed, of battle, murder and sudden death, Popish plots, pestilence and
famine, ever and anon demanding more or less of our philosopher’s time and
attention; together with the whole charge of his twelve children, and more than
half the charge of his unruly brothers, besides farming operations extending from
the Firth to the banks of the Teith, and the islands of Lochlomond; mingled with
ocassional demands for his “singular judgment,” from the General Assembly of
the church, to the dark outlaw who indulged in magic, and the courtly lawyer
to sought a lesson in mesuration; with the exception, we say, of these inevitable
interruptions, our philosopher lived the life of an intellectual hermit, entirely
devoted to his theological and mathematical speculations, and delighting in no
converse so much as the clear crow of his favorite bird, more powerful, to
“dismiss the demons” than all the incantations of Lilly.

5 Use
lim
α→β

yα − yβ

α− β
= yβ log y
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which was studied by Euler in 1783. The notational adjustment β → k–1

produces
y = xk log x (1)

which in the case k = 0 reads

y = log x ⇐⇒ x = ey by standard functional inversion (2)

and in the case k = 1 becomes precisely the equation

y = x log x (3)

that sparked this entire discussion: the complex extension of the y(x) produced
by functional inversion of (3) is central to a 1899 paper by Arnold Sommerfeld
(who at the time was unacquainted with the then-long history of what we have
called “Sommerfeld’s equation”), of which Robert Warnock has provided an
English translation.6

Basic inversion methods.

algebraic inversion

Look to the case
y = f(x) ≡ 4 + 2x + x2

which (Figure 1f) describes an up-turned parabola with vertex (turning point)
at {x0, y0}, where x0 = −1 and y0 = f(x0) = 3. It is evident from the figure
that

• f(x) is monotone decreasing for x < x0, monotone increasing for x > x0;
• g(y) is single-valued at y = y0, double-valued for y > y0.

Algebra supplies
x = g(y) = −1 ±

√
y − 3 ≡ g±(y)

which are complex for y < y0, real-valued for y > y0. From

g+(y > y0) > x0 and g−(y > y0) < x0

we see that

y = f(x) is inverted by
{

g+(y) for x-values > x0

g−(y) for x-values < x0

The functions g±(y), when graphed (Figure 1g), fuse to produce to produce a
continuous curve, a parabola that opens to the right, with vertex at {y0, x0}
where y0 = 3, x0 = −1.

Similar in all essential respects is the Gaussian case

y = f(x) ≡ e−x2

which (Figure 2f) is monotone increasing/decreasing according as x ≶ x0 = 0.

6 “On the propagation of electrodynamic waves along a wire” (unpublished).



4 Applied functional inversion strategies

Here y ranges on the unit interval [0, 1], and within that interval g(y) is clearly
double-valued. Immediately

x = g(y) = ±
√

log(1/y) ≡ g±(y)

y = f(x) is inverted by
{

g+(y) for x-values > x0

g−(y) for x-values < x0

The functions g±(y), when graphed (Figure 2g), fuse to produce to produce a
continuous curve, a Gaussian that peaks to the right.

Those examples illustrate this general point: the function f(x) can be
expected in typical cases to partition the x-axis into disjoint “monotonicity
intervals” In : xn < x < xn+1 bounded by points where f(x) is either level
or discontinuous, and within each of which f(x) is monotonic (Figure 3). The
functional inverse g(y) of f(x) is typically multivalued, acquiring distinct forms
gn(y) on each of the intervals:

y = f(x) is inverted by gn(y) for x ∈ In

inversion by integration

Only seldom can inversion problems be solved by such direct algebraic means
(consider the case y = f(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5). An
alternative of which we will have occasion to make use proceeds from the basic
relation f(g(y)) − y = 0. Differentiation supplies a diffential equation

f ′(g(y)) · g′(y) − 1 = 0 (4)

which can in favorable cases be integrated. Look again, for example, to the
quadratic case f(x) = 4 + 2x + x2, which gives

2(g(y) + 1)g′(y) − 1 = 0

whence
∫

(2g + 2)dg =
∫

dy. So we have g2 + 2g = y + c, or

g(y) = −1 ±
√

y + 1 + c

Those functions coincide at y = −(1 + c), where

f(x) = 4 + 2x + x2 = −(1 + c)

entails
x = −1 ±

√
−4 − c

which also coincide (as inversion requires) if and only if c = −4, and their
coincident value is x0 = −1, where f(x0) ≡ y0 = 3. Thus do we recover

g±(y) = −1 ±
√

y − 3

and reproduce the vertex details shown in Figures 1.
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Of greater interest, both historically and methodologically, is Napier’s case

f(x) = bx

Working now from d
dx

[
g(f(x)) − x = 0

]
we have

dg(f)
df

=
[df(x)

dx

]
–1

In the present instance

df(x)
dx

= d
dxbx = Kbx = Kf(x) with K(b) = loge b

so from dg = [Kf ]–1df—which gives
∫ g(f(x))

0
dg = 1

K

∫ x

1

df
f

(here the lower limits arise from f(0) = 1)—we obtain

g(bx) = 1
K(b)

∫ x

1

dt
t

, to which Napier gave the name “logb x” (5.1)

The special simplicy of the “natural” (originally “Napierian”) logarithm arises
from the circumstance that K(e) = loge e = 1. In the special case f(x) = ex we
have

g(ex) =
∫ x

1

dt
t

, an intractable integral given the name “log x” (5.2)

In this notation (5.1) becomes

logb x = log x
log b

Basic properties of log x follow directly from the integral representation (5.2),
(see Figure 4).

Inversion problems, approached in this way, quite commonly result in
intractable integrals to which one is obliged simply to assign names, and to
grant admission to the canon of “higher functions.” Examples are

“arctan x” =
∫ x

0

dt
1 + t2

“arcsin x” =
∫ x

0

dt√
1 − t2

The integral encountered in (5) stands in obviously close relationship to the
harmonic series

Hn = 1 + 1
2 + 1

3 + · · · + 1
n

Indeed, one has
Hn − 1 < log n < Hn − 1

n
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and—most importantly—

lim
n→∞

[
Hn − log n

]
= γ, the Euler-Mascheroni constant

= 0.5772156649

The story is (once again) nicely told—so far as it can be told; essential properties
of γ remain unknown—by Julian Havil.7

lagrange inversion

Of more general utility—available whenever f(x) can be developed as a power
series

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · =
∞∑

n=0

anxn

—is the Lagrange inversion formula8 (1770, 1773), which displays the inverse
function g(y) as a power series in y − a. The Mathematica command9

InverseSeries[Series[f[y],{y,0,n}]]

produces the first n terms of that series; thus (set n = 5)

g5(y) = 1
a1

(y − a0) −
a2

a3
1

(y − a0)2 + 2a2
2 − a1a2

a5
1

(y − a0)3

+ −5a3
2 + 5a1a2a3 − a2

1a4

a7
1

(y − a0)4

+ 14a4
2 − 21a1a2

2a3 + 3a2
1a

2
3 + 6a2

1a2a4 − a3
1a5

a9
1

(y − a0)5

Increasing the value of n brings additional terms into play, but does not alter
the value of the terms displayed above. Mathematica -assisted calculation gives

g5

( m∑

n=0

anxn
)

= x + terms of orders x6=5+1 through x5m

which we read as indication that in the limit g∞(
∑∞

n=0 anxn) = x.

7 See his Gamma: Exploring Euler’s Constant (2003), esapecially Chapter
Five: “Gamma’s Birthplace.”

8 Sometimes called the “Lagrange-Bürmann inversion formula” because
Lagrange’s formula is a special case of the more general result developed by
H. Bürmann in 1799.

9 The command is based upon general formulæ that can be found in the
literature, but are in themselves far too complicated to be useful except in
favorable cases.
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For the truncated quadratic series f(x) = a+bx+cx2 the Lagrange formula
(n = 7) produces

g(y) = y − a
b

−
(

c
b

)(y − a
b

)2
+ 2

(
c
b

)2(y − a
b

)3
− 5

(
c
b

)3(y − a
b

)4

+ 14
(

c
b

)4(y − a
b

)5
− 42

(
c
b

)5(y − a
b

)6
+ 132

(
c
b

)6(y − a
b

)7
+ · · ·

from which by computation we obtain a result

g7(a + bx + cx2) = x + terms of orders x8=7+1 through x14=7×2

that supports the assertion that g∞(a + bx + cx2) = x. We know, however, that
in this instance algebraic inversion supplies two inverse functions, namely

g±(y) =
−b ±

√
b2 − 4ac + 4cy

2c

= −b ±
√

b2

2c
±
√

b2
{y − a

b2
− c

(y − a
b2

)2
+ 2c2

(y − a
b2

)3
− 5c3

(y − a
b2

)4
+ · · ·

The functions f±(y) are coincident at y = (4ac− b2)/4c but otherwise distinct.
They are found to be well approximated by the preceding pair of series (and
their distinctness preserved) only if all occurances of

√
b2 are interpreted to

mean b. But if all occurances of ±
√

b2 are interpreted to mean b then one
recovers the solitary Lagrange series. Lagrange inversion has in this instance
captured g+(y) but missed g−(y). We can expect similar failure whenever g(y)
is multi-valued.

Look now to the case f(x) = ex. Lagrange inversion gives

g(y) = (y − 1) − 1
2 (y − 1)2 + 1

3 (y − 1)3 − 1
4 (y − 1)4 + 1

5 (y − 1)5 − · · ·

= −
∞∑

n=1

1
n

n∑

k=0

(−)k

(
n

k

)
yk

=
∞∑

k=0

{
(−)k+1

∞∑

n=1

1
n

(
n

k

)}
yk

≡
∞∑

k=0

Gk yk

Here G0 = −
∑∞

n=1
1
n diverges harmonically, and indeed, all of the coefficients

diverge: Gk = ±∞ according as k is odd or even. This is Lagrange’s way
of saying that log y cannot be developed as a power series. But because the
Lagrange formula refers to the formal structure of series—irrespective of their
convergence properties—we have

InverseSeries[InverseSeries[Series[ex, {x, 0, 5}]]]
= 1 + x + 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + 1

5!x
5 + O[x]6 = ex
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Similarly, we in the case f(x) = ex − 1 obtain

g(y) = InverseSeries[Series[ey − 1, {y, 0, 5}]]
= y − 1

2y2 + 1
3y3 − 1

4y4 + 1
5y5 − · · ·

= log(y + 1)

and

InverseSeries[InverseSeries[Series[ex − 1, {x, 0, 5}]]]
= x + 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + 1

5!x
5 + O[x]6 = ex − 1

In this case non-convergence was not an issue; g(y) does (for |y| < 1) converge,
to a “named function,” though it was here again only to the formal properties
of the g-series that the Lagrange formula looked when reconstructing f(x).

From log to Lambert. We advance now from y = ex to the “next simplest case”

y = f(x) ≡ xex = x + x2 + 1
2!x

3 + 1
3!x

4 + 1
4!x

5 + 1
5!x

6 + · · · (6)

It is evident from the associated graph (Figure 5) that

g(y) is
{

double-valued for y < 0
single-valued for y > 0

The equation y = xex does not yield to direct algebraic inversion, but
when written x = y/ex suggests the recursive process

x = y/ exp(y/ exp(y/ exp (y/ · · ·)))

which in Mathematica can be implemented by defining w(y, s) = y/ exp(s) and

W (y, n) = Nest[w[y,#]&,y,n]

= result of nth-order recursive iteration

The command NestList[w[y,#]&,y,n] can be used to check convergence,
which obviously fails for y < −1/e, but

W (−1/e + 0.00001, 100) = −0.979916
f(−0.979916) = (−1/e + 0.00001) + 0.000065

demonstrates that convergence is reasonably swift already for y -values only
slightly above ymin = −1/e. 6-place stability is achieved with only 20 iterations
for −0.3 < y < 0.7, but to achieve such stability for y > 1.5 the number n of
iterations must be pushed to progressively higher values. Figure 6 shows the
values assumed by W (y, 20) at 100 equi-spaced points yk, where

y1 = −1/e + 0.0186788 = −0.367879
y100 = 1.5

The scheme provides no hint of double-valuedness for y < 0 (but see below:
page 13).
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Differentiation of g(y)eg(y) − y = 0 produces the differential equation

eg(y)g′(y)[g(y) + 1] − 1 = 0

for which the DSolve command produces

g(y) = LambertW(y + c)

We are informed by Mathematica that (as will emerge) LambertW(0) = 0, so to
achieve g(0) = 0—forced by the equation which was our point of departure—we
are obliged to set the constant of integration c = 0, giving

x = g(y) = LambertW(y), henceforth denoted W (y)
= y − y2 + 3

2y3 − 8
3y4 + 125

24 y5 − 56
5 y6 + 16807

720 y7 − · · · (7)

=
∞∑

n=1

(−n)n−1

n!
yn

≡
∞∑

n=1

Gnyn

We are gratified to discover that (7) is precisely the series produced by Lagrange
inversion of (6). In those results there is again no hint of double-valuedness.

Giving names

f5(x) =
4∑

k=0

1
k!

xk+1

g8(y) =
8∑

n=1

(−n)n−1

n!
yn

to truncated expansions of f(x) and g(y), we find by computation that

g8(f5(x)) = x + terms of orders x6=5+1 through x40=5∗8

which we read as indication that g(y) is in fact the—or at least an—inverse of
f(x).

The coefficients Gn grow rapidly very large—in Stirling approximation

log Gn ≈ (n − 1) log n −
{

log
√

2π + (n + 1
2 ) log n − n

}

= n − 3
2 log n − log

√
2π

so Gn grows a little more slowly than en —and for y > 0 successive terms in
the series alternate in sign. Both of those circumstances impede convergence.
Numerical experiments indicate that convergence becomes very slow and noisy
as |y| approaches 0.35. It will emerge that in fact the series converges if and
only if

|y| < 1/e = 0.367879

The properties of “Lambert’s W-function” W (y) are treated in none of the
standard higher-function handbooks, but the complex extension and diverse
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applications of which are developed in elaborate detail in a paper by Corless at
al .10

The complex extension W (z) of W (x) is, like the complex extension log z of
log x, for typical values of z infinitely multivalued, which is to say: it possesses
infinitely many sheets (marked by branch cuts). Those—signified Wn(z), with
W0(z) ≡ W (z)—are produced by the Mathematica commands

LambertW[n,z] : n = 0, ±1, ±2, . . .

and can be visualized by variants (replace Im by Re, Abs, Arg) of commands of
the form11

Plot3D[Im[LambertW[n,x+iy]],{x,-2,2},{y,-1,1}]

From such figures (else from Plot[LambertW[n,x],{x,-2,2}], which is blank
unless Wn(x) is real) we discover that

• W0(z) is real only on the semi-infinite real line −(1/e) < x < ∞;
• W1(z) is real only the real interval −(1/e) < x < 0;
• All other sheets are everywhere complex.

Graphs of W0(y) and W−1(y) are shown in Figure 7; they are seen to splice
together to form a continuous curve, which for y ∈ {−1/e, 0} is double-valued.11

Previously I inserted a truncation of the xex-series into a truncation of
the W0(y)-series to establish evidence that x = W0(y) is indeed the functional
inverse of y = xex. There are, however, swifter and more instructive ways to
achieve that same objective. Mathematica almost instantly supplies

Series[LambertW0[xex],{x,0,10}]= x + O[x]11

but Series[LambertW−1[xex],{x,0,10}] is a very long and unworkable mess,
involving a great many Log, Arg and Floor operations. We can circumvent this
difficulty by proceeding pointwise: the function xex is (see Figure 5) double-
valued for x < 0. It is found (use FindRoot) to acquire (say) the value

xex = −0.03 at
{

x = A ≡ −0.489402
x = B ≡ −1.781340

and we verify that indeed
W0(−0.03) = A

W−1(−0.03) = B

10 R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffery & D. E. Knuth,
“On the Lambert W function,” Advances in Computational Mathematics 5,
329–359 (1996).

11 A possible point of confusion: To denote complex numbers I write z = x+iy.
But in W (y), the functional inverse of y = x ex (x real), the variable y is
understood to be real; it does not refer to the imaginary part of anything.
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On that evidence we conclude (and verify by additional test calculations)
that (see Figure 7)

y = f(x) = xex is inverted by
{

W0(y) for x-values > x0

W−(y) for x-values < x0

x0 = −1

A brief note in passing: it is reported12 that W0(y) admits of integral
representation

W0(y) = y
π

∫ π

0

(1 − ν cot ν)2 + ν2

y + ν csc ν · e−ν cot ν
dν (8)

reminiscent of the representation (5.2) of log x. Mathematica is unable to
perform the symbolic integration, but the command

y
π
NIntegate[

(1 − ν cot ν)2 + ν2

y + ν csc ν · e−ν cot ν
,{ν, 0,π}]− LambertW[y]

returned values that did not exceed 10−10 when y ranged between 0.95(−1/e)
and 4.0,13 so (8) appears to be correct. The argument that led to (5.2) appears,
however, to fail in this instance. Differentiating W (f(x)) − x = 0 with respect
to x leads to

dW = df
(x + 1)ex

which is a dead end since the denominator cannot be expressed in terms of f .

Sommerfeld’s inversion problem. As was remarked on page 3, Sommerfeld had
physical reasons to be interested in the inversion of

y = f(x) = x log x (3)

which is plotted in Figure 8f, and from which we conclude that

g(y) is
{

double-valued for −1/e < y < 0
single-valued for y > 0

A change of variable x → x(u) = eu causes Sommerfeld’s (3) to read

y = f(x(u)) = euu

which is precisely Lambert-Euler equation discussed in the preceding section,
so immediately

g(y) = eW (y)

12 See the Wikipedia article “Lambert W function.” This result does not
appear in Corless.

13 234 equi-spaced points were tested. For small values of y the difference
values did not exceed 10−11.
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or—more precisely—

the inverse of y = f(x) = x log x is
{

g−(y) = exp[W−1(y)] if 0 < x < 1/e
g+(y) = exp[W0(y)] if x > 1/e

whch produces Figure 8g. Had we worked from

d
dy [g(y) log g(y) − y] = g′(y)[1 + log g(y)] − 1 = 0

the command DSolve would have produced

g(y) = y + c
W0(y + c)

= exp[W0(y + c)] by a fundamental Lambert identity

but issued this well-advised warning: “Inverse functions are being used by
Solve, so some solutions may not be found.”

Lagrange inversion of

exp[W0(y)] = 1 + x − 1
2x2 + 2

3x3 − 9
8x4 + 32

15x5 − 625
144x6 + · · · (9)

gives what we recognize to be the series

f(x) = (x − 1) + 1
2 (x − 1)2 − 1

6 (x − 1)3 + 1
12 (x − 1)4 − 1

20 (x − 1)5

+ 1
30 (x − 1)6 − 1

42 (x − 1)7 + 1
56 (x − 1)8 − 1

72 (x − 1)9 + · · ·

that results when x log x is developed in powers of (x − 1).14 The series (9)
mimics the awkward features of the expansion (7) of W0(y). Unfortunately, a
series analogous to (9) is—for the reason remarked on page 10—not available
for exp[W−1(y)].15

Sommerfeld—who in 1898 was ignorant of the work of Lambert-Euler
(which by then lay 115 years in the past), who did not possess the W -analog
of a log table, and for whom computer magic was not even a dream—stood in
need of a way to calculate the x-values that lead via y = x log x to specified
y -values, particularly in cases of the form y = −u + iv where u and v are small
positive real numbers. That there might exist two such x-values seems, though
evident in Figure 8f, to have escaped his attention. Writing

x = y
log x

he proposed to proceed by recursive iteration

14 Signs alternate, denominators advance by addition of the next even integer,
development in powers of x is not possible.

15 One could, however, simulate one by fitting a high order polynomial to
numerically-generated data points {yk, W−1(yk)}.
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x = y/ log(y/ log(y/ log(y/ log(· · ·)))) (10.1)

though he might in that same spirit have written

x = exp(y/x)

and proposed to proceed

x = exp(y/ exp(y/ exp(y/ exp(· · ·)))) (10.2)

From
p(y, s) = y/ log s

q(y, t) = exp(y/t)

I have constructed the commands

P[y−,n−]:=Nest[p[y,#]&,y,n]

PList[y−,n−]:=NestList[p[y,#]&,y,n]

Q[y−,n−]:=Nest[q[y,#]&,y,n]

QList[y−,n−]:=NestList[q[y,#]&,y,n]

Mathematica reports (set n = 20) that at y = −0.1 both processes converge
rapidly, to

P[−0.1, 20] = 0.027955
Q[−0.1, 20] = 0.894194

These are to be compared with

exp[W−1(−0.1)] = 0.027955
exp[W0(−0.1)] = 0.894194

of which
f(0.027955) = f(0.894194) = −0.1

provide confirmation. But at y = 0.1 > 0 the picture changes, as from Figure 8g
we expect it to do; convergence is still rapid in both cases, and we do have

Q[0.1, 20] = 1.09557 = exp[W0(0.1)] , f(1.09557) = 0.1

But

P[0.1, 20] = −0.0180768 − 0.0120544i

{
the sign of the imaginary
part oscillates

exp[W−1(0.1)] = −0.0127744 + 0.0124075i

and at neither of those values does f(•) = 0.1. We conclude that Sommerfeld’s
P-process reproduces the g−(y) branch of the inverse (which evidently answered
to his physical requirements) while the Q-process reproduces the g+(y) branch.
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Points produced by the P and Q-processes are shown in Figure 6. The recursive
processes (10) were anticipated already on page 8; we are in position now
to understand why—and to deal with the fact—that the process described
there “provided no hint of double-valuedness.” Sommerfeld had studied the
convergence properties of the P-process already in 1898.16

One can only wonder whether the fact that P-process, with its iterated log
functions, leads to a W -function has something to do with the circumstance
that such functions are known as ProductLog functions to Mathematica, which
recognizes LambertW only as a silent alias.

Generalized Lambert/Sommerfeld inversion. As was remarked on pages 2–3,
Euler was led from Lambert’s transcendental equation to an equation

y = xk log x (1)

that gives back Sommerfeld’s equation as a special case. Familiar manipulations
(write x = eu, then adjust the notation u → x) bring (1) to a form

y = x ekx (11)

that by inversion has been seen to produce Lambert W-functions in the case
k = 1, but trivializes (becomes x(y) = y) in the case k = 0. I look here to
details of the transition

0 ←−−−−−−−−
k

1

—a process of interest because it morphs unfamiliar functions to familiar ones,
and entails a loss of double-valuedness.

Graphs of the functions f(x, k) = x ekx (k = 1
10n : n = 0, 1, . . . , 10) are

shown in Figure 9f. f(x, 0) = x is linear, but

lim
−∞←x

f(x, k > 0) = 0, with minimum −1/ke at x = −1/k

The minimum gets deeper and moves farther to the left as 0 ← k.

From d
dy [x(y) exp kx(y) − y] = x′(y) exp kx(y)[kx(y) + 1] − 1 = 0 we by

DSolve obtain

x(y) = W (ky)
k

= y
exp[W (ky)]

= y − ky2 + 3
2k2y3 − 8

3k3y4 + 125
24 k4y5 − 54

5 k5y6 + 16384
315 k6y7 − · · ·

=
{

W (y) : k = 1
y : k = 0

which by Lagrange inversion gives back

y(x) = x + kx2 + 1
2k2x3 + 1

6k3x4 + 1
24k4x5 + · · · = x ekx

16 “Uber die numerische Anflösung transcendenter Gleichungen durch
successive Approximationen,” Gött. Nchr., December 1898. This is a paper
of which Robert Warnock has proposed to prepare an English translation.
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W (ky)/k is real for y > −1/ke, at which point it assumes its minimum value
−1/k. We conclude that

x(y) =
{

W0(ky)/k : y > −1/ke
W−1(ky)/k : y < −1/ke

(12)

The transition point moves down and to the left as k decreases, in both cases
approaching −∞ as 0 ← k, in which limit W0(ky)/k → y and the subordinate
branch of x(y) evaporates. Those functions are plotted (for k-values k = 1

10n :
n = 0, 1, . . . , 10) in Figure 9g. The complicated inverse function (12) has
morphed to the simple function x(y) = y.

Turning now from generalized Lambert inversion to generalized Sommerfeld
inversion, graphs of the functions

y = f(x, k) = xk log x (1)

are, for the same assortment of k-values, shown in Figure 10f. f(x, k) assumes
its minimal value −1/ke at x = e−1/k, which move ↓ −∞ and 0 ← (respectively)
as 0 ← k. It is evident from foregoing work that

x(y) =
{

exp[W0(ky)/k] : y > −1/ke
exp[W−1(ky)/k] : y < −1/ke

(13)

which produce Figure 10g. At the transition point y = −1/ke the inverse
function x(y) assumes the value e−1/k, which ↓ 0 as 0 ← k. At k = 0 the
subordinate branch of (13) evaporates, and we are left with x(y) = ey; the
complicated function (13)—the generalized Sommerfeld function—has morphed
to a simple exponential.

The recursive procedures described on page 13 generalize straightforwardly.
When (1) is formulated

x =
( y

log x

)1/k
= exp

( y
xk

)

we are led to define

p(y, s, k) =
( y

log s

)1/k

q(y, s, k) = exp
( y

sk

) (14)

and, proceding as before, find that—when 0 < k " 1, and y < 0 falls within
the k-specific range described above—P (y, k, n) and Q(y, k, n) reproduce the
values assumed by (respectively) the lower/upper branches of (13), and that
Q(y, k, n) reproduces the upper branch even when y > 0. In the limit 0 ← k
the P-process becomes nonsensical (the lower branch has evaporated), but the
Q-process yields the anticipated result ey, irrespective of the sign of y.
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I gather that recursive function theory has been carried to a high level by
pure/applied “computability” theorists. At a more pedestrian level, I would,
with (10) and (14) in mind, like to possess general criteria that—given f(x, s)—
speak to the convergence of

f(x, f(x, f(x, · · ·)))

analogous to the criteria that speak to the convergence of infinite sequences
(the ultimate name of the game), series and continued fractions.17

Complexification. The story acquires complications—complexities that are in
some respects surprising/counterintuitive—when the variables {x, y} move off
the real line onto the complex plane (as Sommerfeld’s application required).
Those are surveyed—mainly by appeal to 3D displays of the modulus, phase,
real & (especially) imaginary parts of the relevant complex functions—in
“A paradox involving Sommerfeld’s function” (July 2017).18

17 I remark in this connection that we are led by the identity

√
x = 1 + x − 1

1 +
√

x

to define f(x, s) = 1 + x − 1
1 + s

R[x−,n−]:=NestList[f[y,#]&,y,n]

which for any x displays
√

x as a continued fraction. In the case x = 2, n = 9
we get {

2, 4
3 , 10

7 , 24
17 , 58

41 , 140
99 , 338

239 , 861
577 , 1970

1393 , 4756
3363 = 1.41421 =

√
2

}

18 The “paradox” of the title—now resolved—referred to the fact that
Sommerfeld’s P-process does not reproduce the values produced by the
analytical result g(y) = exp[W (y)]; to obtain agreement one must, as we have
seen, bring W−1(y) into play.


